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RESUMO

O presente trabalho pretende apresentar e comparar métodos de leitura de 

sinais elétricos para exames de Eletroencefalograma no auxílio da 

identificação de pacientes epilépticos. Embora normalmente seja uma doença 

de fácil tratamento, o diagnóstico costuma requerer a atenção de um 

especialista e ser fastidioso. Levando em consideração que se tratam de 

sinais não lineares e não estacionários, os métodos são divididos em duas 

partes: a transformação dos sinais e a classificação do paciente em 

possivelmente saudável ou possivelmente epiléptico. A partir de duas bases

de dados da literatura, é possível comparar o desempenho de cada método e 

determinar as vantagens e desvantagens de cada um. Foram aplicados 

diferentes métodos (Transformada de Fourier, Método de Frequências,

Método de Entropias e combinações) com classificadores (SVM e Árvore 

Complexa).



ABSTRACT

This report intends to present and compare methods to classify electrical signs 

from EEG exams in order to identify epileptic patients. Although the treatment 

to this syndrome is usually simple, the diagnosis is a tedious and time-

consuming process. Taking into account the fact EEG signal are nonlinear and 

nonstationary, the methods were presented in two steps: transformation of 

EEG signals and classification of the patients in possibly epileptic or possibly 

healthy. From two different database available in the literature, we are able to 

compare the efficiency of each method and determine their pros and cons. 

Different methods were used (Frequency method, Entropy Method, Fourier 

Transformation Method and combinations) with classifiers (SVM and Complex 

Tree). 
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1. Introdução

Segundo a Organização Mundial de Saúde, a OMS, hoje no mundo 

aproximadamente 50 milhões de pessoas sofrem com epilepsia, fazendo dela 

uma das doenças neurológicas mais comuns globalmente. Perto de 80% das 

pessoas com epilepsia vivem em países de baixa e média renda. Destes 

mesmos 80%, 70% não recebe um tratamento adequado para a doença.

A epilepsia, embora possa ser classificada em diversos tipos diferentes, não 

é uma doença contagiosa. A forma mais comum da síndrome, a epilepsia 

idiopática, ainda não possui causa identificada e responde por 6 em cada 10 

casos da doença. 

As síndromes de causa conhecida são chamadas de epilepsia secundária ou 

sintomática. Entre as diversas causas, podemos citar dano cerebral 

provocado por lesões pré-natais ou perinatais; anormalidades congênitas ou 

condições genéticas; ferimento grave na cabeça; infecções no cérebro como 

meningite, encefalite e neurocisticercose; etc.

Acredita-se que boa parte destas causas de epilepsia secundária expliquem 

a maior incidência da síndrome em países de menor renda devido às maiores 

taxas de doenças endêmicas, a maior incidência de acidentes de trânsito, 

lesões relacionadas ao nascimento e variações na infraestrutura médica, 

como na disponibilidade de programas preventivos de saúde e cuidados 

acessíveis.

O tratamento da doença pode ser facilmente acessível a um custo baixo de 

medicação diária, que pode custar tão pouco quanto 5 dólares ao ano. 

Estudos recentes em países de média e baixa renda mostram que até 70% 

de crianças e adultos com epilepsia podem ter suas crises completamente 

controladas com medicamentos antiepilépticos (AEDs, ou anti-epileptic drugs, 

em inglês). Mais surpreendente, é o fato de que após 2 a 5 anos de tratamento 

bem-sucedido e sem convulsões registradas, as drogas podem ser 
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suspendidas em até 70% das crianças e 60% dos adultos sem complicações 

subsequentes. Em alguns casos, procedimentos cirúrgicos podem ser 

indicados a pacientes que não reajam ao uso da medicação.

Controversamente, sabe-se que 75% das pessoas com epilepsia em países 

de média e baixa renda não recebem o tratamento necessário. Além disso, 

nesses países a disponibilidade de AEDs é baixa, chegando a menos de 50% 

no setor público de saúde, dificultando o acesso.

É possível diagnosticar e tratar a maior parte das pessoas portadoras da 

síndrome em um nível primário de atendimento à saúde, sem a necessidade 

de equipamentos sofisticados. Estudos da OMS mostram que o treinamento 

de prestadores de cuidados de nível básico para diagnosticar e tratar epilepsia 

pode reduzir substancialmente a lacuna do tratamento da doença.

A falta de capacitação e preparo de profissionais da saúde passa a ser um 

dos gargalos e torna-se uma barreira importante ao tratamento de pessoas 

com epilepsia. Faz-se necessária, portanto, formas de aumentar a 

capacitação de tais agentes e facilitar o processo de diagnóstico.
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2. Objetivo

Esse relatório tem como objetivo mostrar diferentes métodos matemáticos 

para o tratamento e classificação dos sinais coletados através de exames de 

eletroencefalograma, ferramenta fundamental para o diagnóstico da epilepsia. 

A comparação dos métodos permitirá uma posterior análise em termos de 

eficiência e precisão de cada um.

Tendo como alicerce para esse estudo duas bases dados de domínio público 

com informações e exames de pacientes tanto saudáveis quanto epiléticos, 

será aplicado um método reverso para a partir dos exames chegar-se a uma 

possível indicação da saúde dos indivíduos. Estas duas database, Bonn e 

CHT-MIT, que serão tratadas de forma mais aprofundada posteriormente, são 

resultado de uma série de exames de eletroencefalograma de pacientes 

epiléticos e saudáveis que foram diagnosticados por médicos especialistas.

Para tal, aplicar-se-ão à essas duas bases métodos designados método das 

Frequências, método das entropias, método da Transformada de Fourier e 

Machine Learning. Em seguida, uma classificação resultante dos pacientes 

em saudáveis ou epilépticos será apresentada através de classificadores dos 

sinais tratados, como Decision Tree e SVM. 

Finalmente, tendo como parâmetro os diagnósticos dados pelos médicos, 

será possível comparar os resultados obtidos com o estado de saúde real de 

cada paciente, determinando assim a eficiência de cada combinação: método-

classificador.
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3. Revisão do material técnico

3.1.A epilepsia como doença

3.1.1. Crises Epilépticas e a Epilepsia

Uma crise epiléptica nada mais é do que sinais ou sintomas transitórios 

resultados de uma atividade neuronal anormal, síncrona ou excessiva. Podem 

ser classificadas de duas maneiras: crises focais ou generalizadas, que serão 

mais detalhadas em seguida.

É importante salientar que crises epiléticas não implicam diretamente em 

epilepsia. Alguns tipos de ataques cerebrais agudos podem provocar crises 

que não resultam em tendência crônica e não necessitam de tratamento com 

antiepilépticos. Crises ditas sintomáticas agudas correspondem a 40% dos 

casos incidentes de crises não febris.

Epilepsias são grupos de condições em que um distúrbio neurológico 

subjacente resulta em crises recorrentes não provocadas de forma crônica. 

A ocorrência de duas ou mais crises nessas condições configura o diagnóstico 

de epilepsia. Existem vários tipos, causas e expressões clínicas da epilepsia,

mas para alguns casos é possível identificar síndromes epilépticas 

específicas, para as quais é possível criar um grupo com características 

clínicas e eletroencefalográficas semelhantes. Para esses casos, é possível 

determinar etiologias específicas que respondem a tratamentos adequados 

com implicações prognósticas bem definidas. 

Um em cada dez pessoas no mundo irá passar por uma crise pelo menos uma 

vez na vida, apesar de a maioria estar relacionada a eventos agudos. Por esta 

mesma razão, a maior incidência está em recém-nascidos e idosos, por conta 

de causas metabólicas, infecciosas ou encefalopáticas durante o período de 

neonatal e doenças degenerativas e cerebrovasculares em idosos. Diferença 

entre países desenvolvidos e em desenvolvimento.

Para as crises sintomáticas agudas, os principais fatores de risco são: 

traumatismo craniano, AVE, doenças infecciosas, distúrbios tóxicos-

metabólicos e abstinência de drogas e álcool.
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Já para o desenvolvimento da epilepsia, os fatores de risco dependem da faixa 

etária. Na infância, exceto epilepsias hereditárias, podemos citar traumatismo 

craniano, infecções cerebrais, retardo mental, paralisia cerebral. Em adultos, 

os maiores responsáveis são: traumatismo craniano, infecções cerebrais, 

AVE e a doença de Alzheimer.

Em países em desenvolvimento, com na América Latina, em áreas 

endêmicas, a neurocisticercose é responsável por 10% dos novos casos de 

epilepsia.

Apenas 15% dos pacientes epiléticos possuem algum parente portador da 

síndrome, sendo que três quartos possuem apenas um familiar com epilepsia. 

Porém, estudos de base populacional mostram que o risco é maior para 

pacientes com parentes de primeiro grau (pais, irmãos) doentes.

As manifestações clínicas de crises varia consideravelmente em função do 

tipo de crise (motora, visual, auditória, vertiginosa, somatossensorial, etc.) e 

das áreas cerebrais afetadas (frontal, parietal, rolândica, córtex, etc.). A 

identificação precisa dos tipos de crise implicará na medicação necessária 

para o controle da doença. 

1

Figura 1 - Áreas funcionais do cérebro

                                               
1 Imagem traduzida da Texila American University
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3.1.2. Crises Focais

Crises focais surgem em redes neuronais de uma região particular de um 

hemisfério cerebral, produzindo efeitos relacionados àquela área do córtex. 

Tais crises que implicam em perda de consciência ou de estado de alerta são 

chamadas de crises discognitivas.

É de grande valia introduzir também o conceito de aura. Aura consiste em 

sintomas sensoriais, autonômicos ou psíquicos que as pessoas experimentam 

no início de uma crise clínica. Como o senso comum atribui às crises 

epilépticas as convulsões e perdas de consciência, muitas vezes auras 

passam despercebidas por pacientes e médicos.

A identificação da aura é fundamental, pois ela aponta para a área cerebral 

de início das crises focais. Sendo assim, é possível prosseguir a partir de 

maiores investigações sobre anormalidades e disfunções cerebrais na área, 

como tumores ou que pode ser específica para tratamento cirúrgico. Além 

disso, crises focais tem impacto direto no tratamento e prognóstico.

A descarga neuronal de uma crise focal pode restringir-se à sua região de 

origem (como uma aura) ou propagar-se por outras regiões cerebrais. 

Independente da área de origem, crises focais podem atingir estruturas 

límbicas bilateralmente, causando alteração da consciência. Crises focais 

unilaterais podem também se propagar envolvendo áreas cerebrais bilaterais 

causando crise convulsiva.

A evolução de uma crise focal é diretamente refletida nas mudanças 

registradas em no EEG. Como o resultado de algumas crises podem ser 

sintomas breves ou não usuais, elas podem acabar passando despercebidas, 

sendo identificadas somente quando os sintomas estereotipados se 

apresentam e alterações são identificadas no EEG. O diagnóstico se complica 

ainda mais quando em cada crise, a descarga neuronal se propaga para 

regiões diferentes do cérebro, produzindo às mais diversas reações possíveis.
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3.1.3. Crises Generalizadas

Afetam ambos os hemisférios cerebrais e tem sintomas mais definidos. As 

crises convulsivas podem começar nos dois hemisférios ao mesmo tempo ou 

ser uma decorrência de crises focais. Elas podem começar com um grito, 

contrações musculares, pausa respiratória, cianose e incontinência urinária 

seguido de contrações clônicas rítmicas dos 4 membros.

As crises de ausência são o segundo tipo mais comum de crises 

generalizadas. São lapsos breves e abruptos de perda de consciência. Os 

pacientes não têm percepção da ocorrência do evento e podem não perceber 

a passagem do tempo, embora percam a sequência do raciocínio. Isso ocorre 

sem sintomas de aura, já que perda e retomada de consciência são abruptas. 

Professores são os primeiros a notarem as crises desse tipo em crianças 

durante a infância.

3.1.4. Diagnóstico

Diagnóstico diferencial

O diagnóstico básico é dado pela história clínica, que quando cuidadosa é 

capaz de revelar se os episódios do paciente se tratam de crises epilépticas. 

Exames de EEG, imagens e estudos laboratoriais podem auxiliar na 

determinação do tipo de epilepsia, local de origem das crises focais.

O primeiro passo dos médicos é a determinação se os episódios descritos se 

tratam ou não de crises epiléticas. Existem três fatores principais capazes de 

distingui-las de outras causas de perda de consciência, como síncopes:

 O contexto clínico, como o histórico médico e familiar, além das 
circunstâncias do ocorrido

 Fatores provocadores ou desencadeadores
 O primeiro sinal ou sintoma como a presença de aura/evidência de 

crise focal. A evolução após o início, o término e se existem déficits 
neurológicos após a crise.

Como pacientes costumam ter perda de consciência durante episódio e 

algumas vezes de perda de memória do ocorrido, a participação de 

acompanhantes na descrição do caso é fundamental.
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Investigações diagnósticas

Uma história detalhada, registros de EEG e ressonância magnética fortalecem 

o diagnóstico para até 50% dos pacientes. O monitoramento contínuo por 

vídeo-EEG em uma unidade de internação de epilepsia pode aumentar a 

sensibilidade do diagnóstico.

Vamos em seguida detalhar apenas o exame de eletroencefalograma que 

possui alta relevância para nosso estudo.

3.1.5. Eletroencefalograma

O exame de EEG é a principal forma investigativa em todos os pacientes com 

crises e epilepsia. Ele é fundamental para se determinar a síndrome epiléptica 

e o determinado tratamento. Para epilepsias focais, o EEG ajuda na 

identificação das áreas de anormalidade.

O EEG pode determinar com certeza o diagnóstico de epilepsia se for 

realizado durante uma crise clínica e descargas elétricas esperadas forem 

identificadas. Ele pode falhar nessa identificação caso o foco da crise seja 

muito pequeno ou muito profundo, se as descargas. Ele sempre será efetivo 

durante crises de ausência e crises convulsivas generalizadas.

Entre crises, ele pode ajudar na avaliação da função cerebral geral e do tipo, 

localização e quantidade de descargas epileptiformes (espículas).

Para 60% das pessoas com epilepsia diagnosticada, o EEG inicial é normal. 

Esse número pode ser melhorado para pessoas com epilepsia focal quando 

o número de exames realizados passa para três ou mais, registrando assim 

anormalidades epileptiformes em 80% dos indivíduos. Em epilepsias 

generalizadas, as descargas anormais são mais facilmente identificáveis.

Nos casos de avaliação cirúrgica de pacientes epilépticos deve-se registrar o 

exame durante uma crise ao menos. Para pacientes em estado de coma, é 

altamente sugerido o monitoramento contínuo com vídeo-EEG.
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3.1.6. Tratamento

O tratamento de crises e de epilepsia, como já foi citado anteriormente, está 

estritamente ligado à identificação do tipo de crise e síndrome epilépticas, mas 

também à probabilidade de crises recorrentes, incidência, gravidade das 

consequências físicas e psicossociais e se o benefício do tratamento supera 

substancialmente os possíveis efeitos colaterais.

Deve-se identificar e diminuir impreterivelmente todos e quaisquer tipos de 

fatores ambientais fisiológicos ou estilo de vida que aumente a probabilidade 

de crises, como a privação de sono.

Tratamentos cirúrgicos devem ser muito bem analisados, pois envolve a 

ressecção ou desconexão da região cerebral que contém o foco da crise. No 

entanto, muitos pacientes que passam pelo processo acabam tendo 

reincidência de crises e voltando para o tratamento com medicação.

3.1.7. Prognóstico da epilepsia

Em países em desenvolvimento, onde ainda pacientes epilépticos não 

recebem o diagnóstico e/ou não realizam o tratamento correto, observou-se 

que para 30 a 40% obtêm remissões depois de 5 a 10 anos sem tratamento. 

Em países desenvolvidos, onde a epilepsia é diagnosticada após duas crises 

não provocadas, a probabilidade de remissão depois de 5 anos é de 60% 

quando acompanhados durante 10 anos e de 70% quando acompanhados 

por 20 anos.

A duração da epilepsia ativa é uma das maiores preditores de remissão. 

Quanto mais as crises permanecerem não controladas depois do diagnóstico 

menores serão as chances de remissão.
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4. As bases de dados

As bases de dados são de grande interesse para estudos deste tipo, pois além 

de ter uma amostra significativa para estudos estatísticos, é possível 

comparar o resultado dos métodos aplicados com o já conhecido diagnóstico 

concebido pelos médicos, que também é um dos campos da database.

4.1.Bases de dados

4.1.1. Database de Bonn

A base de dados de Bonn foi extraída em 2001 para Universidade de Bonn, 

na Alemanha e contém os resultados discretizados dos exames de EEG de 

pacientes saudáveis e epiléticos. Trata-se de uma base de dados pública 

disponibilizada pela própria Universidade de Bonn (Andrzejak RG et al, 2001).

O conjunto completo de dados consiste em cinco conjuntos (denotados A-E) 

cada um contendo 100 segmentos de EEG de canal único. Estes segmentos 

foram selecionados e cortados de registros EEG multicanais após inspeção

visual de artefatos, como por exemplo, devido à atividade muscular ou 

movimentos oculares.

Os conjuntos A e B consistem em segmentos extraídos de gravações EEG de 

superfície que foram realizadas em cinco voluntários saudáveis usando um 

esquema padronizado de colocação de eletrodos (ver figura 2). 
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Figura 2 - Posicionamento dos eletrodos para EEG externo.

Os voluntários estavam em estado de vigília com os olhos abertos (A) e os 

olhos fechados (B), respectivamente. Os conjuntos C-E originados do arquivo 

EEG de diagnóstico pré-cirúrgico, ou seja, pacientes epilépticos com 

resistência a medicação que aguardavam cirurgia. 

Foram selecionados EEGs de cinco pacientes, todos com controle completo 

de crises após ressecção de uma das formações do hipocampo, o que foi 

corretamente diagnosticado como o epileptogênica. Os segmentos no 

conjunto D foram registados a partir da zona epileptogênica, e os do conjunto 

C da formação hipocampal do hemisfério oposto do cérebro. 

Enquanto os conjuntos C e D continham apenas atividade medido durante os 

intervalos livres de convulsões (estado interictal), o conjunto E continha 

apenas pacientes epilépticos em atividade de convulsão (estado ictal). Aqui 

os segmentos foram selecionados de todos os locais de registo que exibem 

atividade ictal (Andrzejak RG et al, 2001).

Todos os sinais EEG foram gravados com o mesmo 128-Canal amplificador, 
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usando uma referência comum média. Os dados foram digitalizados em 

173,61 Hz usando resolução de 12 bits. As configurações do filtro passam

banda foram de 0,53-40 Hz (12 dB / oct). 

Figura 3 - Sinal resultado de EEG para o caso A – Univ de Bonn

Figura 4 - Sinal resultado de EEG para o caso B – Univ de Bonn
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Figura 5 - Sinal resultado de EEG para o caso C – Univ de Bonn

Figura 6 - Sinal resultado de EEG para o caso D – Univ de Bonn
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Figura 7 - Sinal resultado de EEG para o caso D – Univ de Bonn

4.1.2. Database CHT-MIT

Este banco de dados, coletado no Children's Hospital Boston, consiste de 

registros de EEG de pacientes pediátricos com convulsões intratáveis. 

Os sujeitos foram monitorados por até vários dias após a retirada da 

medicação anti-convulsões, a fim de caracterizar essas convulsões e avaliar 

a sua candidatura para a intervenção cirúrgica.

As gravações, agrupadas em 23 casos, foram coletadas de 22 indivíduos (5 

do sexo masculino, entre 3 e 22 anos e 17 do sexo feminino, entre 1,5 e 19 

anos).  Dois casos pertencem ao mesmo indivíduo do sexo feminino com um 

intervalo de 1,5 anos entre cada medição (Caso chb01 e chb21 

respectivamente). Na tabela 1 podemos perceber a relação entre cada caso 

e o sexo e idade do indivíduo.
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Tabela 1 - Dados de pacientes (Sexo e Idade)

    

Cada caso (chb01, chb02, etc.) contém entre 9 e 42 arquivos .edf contínuos 

de um único objeto. Limitações de hardware resultaram em intervalos entre 

arquivos .edf numerados consecutivamente, durante os quais os sinais não 

foram gravados. Na maioria dos casos, as lacunas são de 10 segundos ou 

menos, mas ocasionalmente há lacunas muito mais longas. 

Para proteger a privacidade dos sujeitos, todas as informações de saúde são 

protegidas, mas as relações de tempo entre os arquivos individuais 

pertencentes a cada caso foram preservadas. Na maioria dos casos, os 

arquivos .edf contém exatamente uma hora de sinais de EEG digitalizados, 

embora aqueles pertencentes ao caso chb10 tenham duas horas de duração, 

e aqueles pertencentes aos casos chb04, chb06, chb07, chb09 e chb23 têm 

quatro horas de duração, ocasionalmente, os arquivos em que as convulsões 

registradas são mais curtas (Shoeb A., 2009).

Todos os sinais foram amostrados a 256 Hz com resolução de 16 bits. A 

maioria dos arquivos contém 23 sinais EEG (24 ou 26 em alguns casos). O 

Caso Sexo Idade Caso Sexo Idade
CHB 01 F 11 CHB 13 F 3
CHB 02 M 11 CHB 14 F 9
CHB 03 F 14 CHB 15 M 16
CHB 04 M 22 CHB 16 F 7
CHB 05 F 7 CHB 17 F 12
CHB 06 F 1.5 CHB 18 F 18
CHB 07 F 14.5 CHB 19 F 19
CHB 08 M 3.5 CHB 20 F 6
CHB 09 F 10 CHB 21 F 13
CHB 10 M 3 CHB 22 F 9
CHB 11 F 12 CHB 23 F 6
CHB 12 F 2
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sistema internacional 10-20 de posições de eletrodos EEG e nomenclatura foi 

usado para estas gravações (ver figura 8).

Figura 8 - Segmento da CHB-MIT database por eletrodo

4.2.Tratamento de sinais de exames de EEG

Diversos métodos matemáticos existem na literatura acadêmica para 

interpretação dos sinais de EEG. Alguns dos métodos foram revisados e 

testados neste trabalho de formatura e são apresentados a seguir.
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4.2.1. Método das Entropias

Existem duas definições relacionadas de entropia: a definição termodinâmica 

e a definição da mecânica estatística, na qual nós daremos mais atenção 

nesse trabalho. 

Historicamente, a clássica definição termodinâmica desenvolveu-se em 

primeiro lugar. No ponto de vista termodinâmico clássico, o sistema é 

composto por um grande número de constituintes (átomos, moléculas) e o 

estado do sistema é descrito pelas propriedades termodinâmicas médias 

desses constituintes; os detalhes dos constituintes do sistema não são 

diretamente considerados, mas seu comportamento é descrito por 

propriedades macroscopicamente médias como temperatura, pressão,

capacidade de calor. 

A descrição da mecânica estatística do comportamento de um sistema é 

necessária uma vez que a definição das propriedades de um sistema que 

utiliza a termodinâmica clássica se torna um método cada vez mais confiável 

de prever o estado final de um sistema que está sujeito a algum processo.

Em resumo, para a mecânica estatística, a entropia é um índice não-linear 

que reflete o grau de desordem de um sistema. Também é uma medida da 

taxa de informação gerada, que pode ser usada no processamento de sinal 

para separar o sinal desejado de qualquer ruído (Acharya, U. et al, 2015). 

Geralmente, entropia de valor significativo corresponde a um sinal não regular 

e imprevisível, e uma entropia de baixo valor corresponde a um sinal regular.

Como já foi visto no decorrer deste trabalho, o sinal EEG de paciente epiléticos 

é mais regular, logo de menor entropia que aqueles de pacientes saudáveis.
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Na literatura existem diversos tipos de entropias que estão sendo estudadas 

para o pré diagnóstico da Epilepsia como por exemplo a Approximate Entropy, 

a  Sample Entropy, a Fuzzy Entropy, a Wavelet Entropy e a Permutation 

Entropy. Neste trabalho vamos nos aprofundar na Entropia Approximate 

Entropy ou “Entropia Aproximada”.

4.2.1.1. Entropia Approximate Entropy (AppEn)

A AppEn é usada para avaliar a instabilidade da variação de um sinal, ela é 

capaz de detectar mudanças no comportamento episódico do paciente e 

compara essas mudanças com amostras de resultado conhecido através do 

comprimento do padrão (m) do coeficiente de similaridade (r). AppEn é uma 

medida invariante na escala porque o critério de similaridade é comparável ao 

conceito estatístico de desvio padrão dos dados. 

Logo, uma série de tempo altamente irregular resulta em uma AppEn elevada 

e uma série de tempo com mais número de padrões semelhantes resulta em 

um valor baixo AppEn. Matematicamente, o ApEn é calculado por:

����� = ln(
��(�)

����(�)
)             (1)

Onde ��(�) é a média padrão do comprimento m e ����(�) é a média padrão 

de comprimento m+1. A média padrão é calculada através da contagem de 

padrões semelhantes de comprimento m e comprimento m+1. Neste trabalho, 

escolhemos m = 2 e r = 0,2 vezes o desvio padrão do sinal EEG, pois a 

literatura mostra que esses dois parâmetros, definidos de forma empírica, 
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resultam em resultados mais precisos na leitura de sinais EEG. A média ��(�)

é calculada por:

��(�) = (���������� �� �(�) ���� �[�(�), �(�)] ≤ �)/(� + � − 1)           (2)

Onde d é a distância entre x(i) e x(j) e N é o tamanho da amostra. Assim, a

AppEn depende do comprimento padrão, que é inconsistente e conta a 

sequência que corresponde a si mesma para evitar a condição ln(0).

A AppEn possui diversas vantagens; ela pode ser calculada para um período 

relativamente pequeno de série de dados ruidosos, como o EEG, ela pode

ainda potencialmente diferenciar uma variedade de sistemas, como periódicos 

e múltiplos periódicos, sistemas caóticos e sistemas estocásticos.

As desvantagens da AppEN são; fortemente dependente do comprimento do 

sinal de entrada. Os sinais especialmente curtos tendem a um valor inferior 

ao esperado e sinais muito ruidosos dificultam a interpretação significativa 

desta entropia.

4.2.2. Método das Frequências

Todo o método apresentado a seguir tem como o base o artigo publicado pela 

universidade chinesa de Chongqing, School of Automation, Chongqing 

University, Fu et al. (2014).

4.2.2.1. Introdução

A detecção de sinais de convulsão em exames de eletroencefalograma é 

fundamental para o diagnóstico médico de casos de epilepsia. Embora estes 
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sinais possam ser identificados com clareza, a ocorrência destes costuma ser 

bastante irregular e imprevisível tornando a leitura de exames de EEG 

(electroencephalogram) um processo um tanto quanto fastidioso e 

consumidor de esforços.

Uma análise completa de um exame requer a atenção e concentração total de 

um expert em leitura de sinais ao longo de toda a extensão dos resultados.

Embora diversas iniciativas tenham surgido no meio, os sinais resultantes de 

um exame de EEG é de uma complexidade alta dado seu padrão não linear e 

não estacionário. Tais padrões fazem de análises como os métodos baseados 

na transformada de Fourier terem certas limitações, visto que estas assumem 

por definição o estudo de um sinal estacionário. 

A leitura e estudo de sinais a partir dos resultados de tais exames continua 

sendo, no entanto, de vital importância para o diagnóstico. Métodos de 

tratamento de sinais em frequência auxiliam na identificação de padrões 

comuns em sinais de pacientes epiléticos.

4.2.2.2. Método

Com uma abordagem direcionada ao estudo de tempo-frequência e 

segmentação de padrões, o método propõe o tratamento de sinais através da 

“Transformada de Hilbert–Huang” (HHT). Esta ferramenta permite observação 

do sinal tanto em informações relacionadas ao domínio da frequência quanto 

ao domínio do tempo. Baseado em um método empírico de decomposição 

(empirical mode decomposition, EMD), o conjunto de dados é decomposto em 

número finito de funções de modo intrínseco (ou em inglês, intrinsic mode 
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functions - IMFs).

4.2.2.3. Transformada de Hilbert-Huang

A transformada de Hilbert-Huang é um método de análise de dados baseado 

em dados empíricos. Comparado com o método de análise de frequência de 

tempo tradicional, como STFT, HHT consegue analisar consistentemente 

sinais não lineares e não estacionários. A técnica HHT para análise de dados 

consiste em dois componentes: EMD e análise espectral de Hilbert (Hilbert 

Spectral Analysis, ou HSA).

O princípio do EMD é decompor um sinal não linear e não estacionário em um 

conjunto de IMFs que tem banda limitada. Cada EMF satisfaz duas condições 

básicas:

 O número de pontos extremos �� e o número de raízes �� devem ser 

distanciados de no máximo 1 unidade:

(�� − 1) ≤ �� ≤ (�� + 1) (3)

 Em qualquer tempo ��, o valor de média local do envelope que é 

definido pela média do máximo ����(�) e o mínimo ����(�) do envelope 

é zero.

[����(��)�����(��)]

�
= 0, �� ∈ [��, ��] (4)

As propriedades do IMF permitem a definição de frequência e instantâneas de 
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uma forma inequívoca, de modo que a transformação de Hilbert pode ser 

aplicada a cada modo intrínseco. 

O algoritmo EMD para um sinal �(�) pode ser implementado da seguinte 

maneira:

 Determinar os extremos máximos e mínimos do sinal �(�)

 Gerar envelopes superiores e inferiores, ���(�) e ����(�), conectando 

todos os máximos e mínimos locais com uma interpolação spline 

cúbica

 Calcular a média point-by-point como

�(�) =
[���(�)� ����(�)]

�
(5)

 Subtrair a média local do sinal:

�(�) = �(�) − �(�) (6)

 Decidir se �(�) é um IMF ou não verificando as duas condições básicas 

descritas anteriormente. Caso os critérios das condições tenham sidos 

satisfeitos, então ���� = �(�). Caso contrário, �(�) = �(�), e o 

processo deve ser reiterado

 Sendo �(�) = �(�) − ����, repetir as etapas anteriores até que �(�) seja 

um resíduo monotônico, caso contrário �(�) = �(�) e o processo deve 

recomeçar

No final deste processo, o sinal x (t) pode ser expresso da seguinte forma:
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�(�) = ∑ ��(�) + ��(�)�
��� (7)

Onde � é o número de modos intrínsecos, �� (�) é o i-ésimo FMI, em �� (�) é 

o resíduo final que pode ser interpretado como o componente DC do sinal.

A segunda da parte do método envolve a análise espectral de Hilbert. Com o 

objetivo de computar instantaneamente frequências e amplitudes e descrever 

o sinal localmente, a transformada de Hilbert é aplicada para cada IMF obtido 

pelo EMD. Para qualquer sinal �(�) de classe ��, sua transformada de Hilbert 

�(�) é:

�(�) =
�

�
� ∫

�(�)

���
��

�

��
(8)

Onde P é o valor principal de Cauchy da integral única. Podemos construir a 

função analítica:

�(�) = �(�) + ��(�) = �(�)���(�) (9)

A amplitude do pré-envelope �(�) e a fase instantânea �(�) são definidas 

como:

�(�) = ��(�)� + �(�)� (10)

�(�) = ������
�(�)

�(�)
(11)

A frequência instantânea pode então ser escrita como uma derivada no tempo 

da fase:

  �(�) =
��(�)

��
           (12)

Ou
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   �(�) =
�

��

��(�)

��
          (13)

Uma representação de tempo-frequência (time-frequency representation, ou 

TFR) é uma perspectiva do sinal representado ao longo do tempo e da 

frequência e é muito útil para a análise de sinais não estacionários. As TFRs 

são frequentemente representadas pela amplitude ou densidade de energia 

ao longo do tempo e da frequência. 

A distribuição de densidade de energia denominada espectro de Hilbert-

Huang do sinal original pode ser obtida por HHT. As funções de amplitude e 

frequência são expressas como funções do tempo que podem ser construídas 

como �(�, �). Ela exibe as contribuições de energia relativa para uma 

frequência específica em um momento específico. O espectro de Hilbert-

Huang é definido como: 

�(�, �) = �� ∑ ��(�)exp(� ∫ ��(�)��)�
��� (14)

Onde �� e �� são amplitude e frequência instantâneas do i-ésimo FMI, 

respectivamente. A distribuição tempo-freqüência do sinal EEG pode ser 

considerada como um TFI, e assim o método de processamento de imagem 

pode ser usado para lidar com o problema de classificação de ataques 

epiléticos.

O próximo passo é a segmentação da imagem de tempo-frequência para 

localizar estruturas significantes e extrair diferentes componentes do sinal. O 

objetivo da segmentação TFI dos sinais EEG é obter regiões que 

correspondam às bandas de frequência dos ritmos. O TFI pode ser dividido 

em 5 sub-imagens correspondentes a tais bandas. O TFI é convertido então 

em uma imagem de escala cinza de 8-bit para obter-se um histograma de 
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escala cinza neste método. A classificação dos principais ritmos do EGG 

baseada nos intervalos de suas frequências:

Tabela 2 - Faixa de frequências por banda

O histograma é uma representação gráfica da distribuição de dados. O 

histograma de uma imagem representa a distribuição dos pixels na imagem 

sobre a escala. O histograma da imagem pode nos dar uma visão intuitiva e 

informações detalhadas sobre a classificação de sinais EEG. Considerando 

uma imagem I, na qual a intensidade em pixel com coordenadas (�, �) pode 

ser representada como I(�, �). Para o histograma ℎ, o ℎ� indica que a 

intensidade � aparece ℎ� vezes na imagem. Então o ℎ� pode ser definido como:

ℎ� = ∑ ∑ �(�, �)�
�

�
� (15)

A forma no histograma da sub-imagem fornece-nos informações detalhadas 

para detectar ataques epiléticos a partir dos sinais EEG. Quatro funções 

estatísticas, incluindo média, variância, assimetria e curtose foram retiradas 

do histograma de sub-imagens de 8 bits em tons de cinza de sinais EEG. O 

uso dessas características é interessante pelo fato de que a distribuição do 

histograma é muitas vezes caracterizada pelo seu nível de dispersão, 

assimetria e concentração em torno da média. Esses recursos são definidos 

da seguinte forma:

� =
�

�
∑ ℎ�

���
��� (16)

Banda Frequência
Delta 0–4 Hz

Teta 4–8 Hz

Alfa 8–12 Hz

Beta 12–30 Hz

Gama 30–50 Hz
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� =
�

��
∑ (ℎ� − �)����

��� (17)

�� =
�

���
∑ (ℎ� − �)����

��� (18)

� =
�

��
∑ (ℎ� − �)����

��� (19)

Onde σ é o desvio padrão, ℎ� é a intensidade do i-ésimo pixel no histograma 

e � é o número de níveis de intensidade na sub-imagem de escala de cinza. 

A média do histograma pode refletir os valores médios das imagens em escala 

de cinza, enquanto a variância mede quanto os valores estão espalhados. 

Assimetria pode refletir o grau de assimetria do histograma. Se o histograma 

for simétrico, então a assimetria é zero. Se a cauda da mão esquerda for mais 

longa, a assimetria será negativa e se a cauda da mão direita for mais longa, 

a assimetria será positiva. 

Curtose é uma medida para o grau de planicidade na distribuição variável. Alta 

curtose tende a ter um pico distinto perto da média, declínio bastante rápido, 

e têm caudas pesadas, enquanto curtose baixa tende a ter um topo plano 

perto do meio do que um pico afiado. A curva normal padrão do histograma 

tem uma curtose de zero.

4.2.3. Método da Transformada de Fourier

Se a informação disponível sobre o sinal consiste nas amostras {�(�)}���
� , a 
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periograma de estimação espectral é dada por:

�����(�) =
�

�
|∑ �(�)���(−�2���)�

��� |� (20)

Onde �����(�) é o periodograma de estimação espectral, � é a frequência do 

sinal EEG e � é o número total de amostras. No método de Welch, os sinais 

são divididos em segmentos sobrepostos, cada segmento de dados é 

‘windowed’, periodogramas são calculados e então a média de periodogramas 

pode ser calculada. {��(�)}, � = 1, … , � são os segmentos da database e cada 

segmento tem comprimento igual a M. Então a sobreposição é 

frequentemente adotada como 50%. O Espectro Estimado de Welch é dado 

por:

���(�) =
�

�
∑ ���(�)�

��� (21)

���(�) =
�

�

�

�
|∑ �(�)��(�)���(−�2���)�

��� |� (22)

Onde ���(�) é o periodograma estimado do l-ésimo segmento e �(�) é a ‘data-

window’, � é a média total de �(�) e � é dado por:

� =
�

�
∑ |�(�)|��

��� (23)

���(�) é o Welch PSD estimado, � é o comprimento de cada segmento de 

sinal e � é o número de segmentos.

Logo, a avaliação do Welch PSD estimado na frequência das amostras é dada 

pela Transformada de Fourier Discreta (DFT):
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�(�) = ∑ �(�) ��� �−�
��

�
�

��

, � = 0, … , � − 1�
��� (24)

  Onde �(�) é o coeficiente da DFT, � é o tamanho da database �(�) (Polat 

K et Günes S, 2007).

4.2.4. Machine Learning

4.2.4.1. Classificação – SVM

SVM é uma técnica de aprendizado de máquina, fundamentada nos princípios 

da Minimização do Risco Estrutural. Esta técnica busca minimizar o erro com 

relação ao conjunto de treinamento (risco empírico), assim como o erro com 

relação ao conjunto de teste, isto é, conjunto de amostras não empregadas 

no treinamento do classificador (risco na generalização). O objetivo de SVM 

consiste em obter um equilíbrio entre esses erros, minimizando o excesso de 

ajustes com respeito às amostras de treinamento (overfitting) e aumentando 

conseqüentemente a capacidade de generalização (VAPNIK, 1999). O 

problema denominado de overfitting consiste em o classificador memorizar os 

padrões 20 de treinamento, gravando suas peculiaridades e ruídos, ao invés 

de extrair as características gerais que permitirão a generalização ou 

reconhecimento de padrões não utilizados no treinamento do classificador 

(SMOLA et al., 2000).

A máquina de vetor de suporte é baseada na teoria de dimensão em 

aprendizado estatístico de Vapnik-Chervonenkis e resolve o problema de uma 

amostra pequena. A SVM maximiza a margem a partir da determinação de 

um hiperplano separador para identificar diferentes classes de dados. Para 

um problema de duas classes, considere um dado conjunto teste {��, ��}�� =

1 com dados de entrada �� ∈ ��, e dados de saída �� ∈ � com rótulos de 
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classe �� ∈ {−1, 1}. O seguinte classificador é considerado:

�(�) = ����[��� + �] (25)

Para garantir que falsas classificações sejam toleradas, o hiperplano ótimo de 

separação deve garantir a condição:

������ + �� ≥ 1 − ��, � = 1, … , � (26)

Onde ��� > 0 são variáveis de folga.

O método SVM é feito dentro de um contexto de teoria de otimização convexa. 

Para obter o hiperplano óptico, precisamos resolver o seguinte problema 

inicial em � e ����:

�����(�, �) =
�

�
��� + � ∑ ��

�
��� (27)

Onde c é uma constante real positiva que permite a ponderação na exclusão 

de amostras mal classificadas.

O problema no espaço de peso primário é um problema de otimização 

restringido, em seguida formulando o Lagrangeano, para então implementar 

as condições para a solução ótima e finalmente resolver o problema no 

espaço dual. O classificador SVM não linear pode assumir a forma:

�(�) = �����∑ �����(�, ��) + ��
��� � (28)

Onde � são multiplicadores de Lagrange, � (�, ��) é uma função de núcleo, 
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que nos permite trabalhar em espaços de característica dimensionais enorme 

sem a necessidade de ter que fazer cálculos explícitos neste espaço. O núcleo 

RBF é usado neste método, pode ser formulado como:

�(�, ��) = ��� �
�‖����‖�

��� � (29)

Onde SIGMA controla a largura do núcleo RFB.

A partir dos resultados das características dos sinais de EEG obtidos 

inicialmente, aplicados na SVM pode-se obter um resultado de classificação.

4.2.4.2. Classificação - COMPLEX TREE

A classificação por árvores (decision tree, em inglês) apesar de ser um método 

simples é amplamente utilizado na literatura em problemas de classificação. 

Podemos imaginar este método como uma série de perguntas que ajudam a 

indicar se um determinado conjunto de características faz parte de um grupo 

A, B, C, etc.

Vamos tomar o caso de um experimento que se proponha a identificar se um 

livro de autor desconhecido foi escrito por algum pensador famoso. A partir de 

uma série de perguntas que já se conhecem as respostas para as obras de 

tal pensador, vamos usar o método para tentar decidir se o livro pode 

pertencer ou não ao autor especificado. 

Poderíamos nos perguntar se a problemática do livro desconhecido é tema 

recorrente deste autor. Ou então, se a maneira de apresentar os argumentos 

é parecida. Ou ainda, se os elementos utilizados são contemporâneos ao 

autor. Através das respostas a todas essas perguntas, iríamos refinar nossa 



23

hipótese inicial e afirmar com certa certeza se ela deve ser mantida ou 

descartada.

Certamente, quanto maior for a base de dados de livros que possuímos do 

autor e quanto maior o número de perguntas que soubermos a resposta, mais 

preciso sério nosso julgamento sobre o livro desconhecido.

Não necessariamente precisaremos realizar todo nosso portfólio de perguntas 

para chegar a uma conclusão se nossa classificação está correta, mas ao 

mesmo nem sempre elas serão suficientes para nos dar 100% de certeza 

sobre nossas hipóteses.

Chamaremos de nó-raiz (root node) a primeira pergunta que faremos (ou seja, 

o primeiro critério que gostaríamos de testar). Esta pergunta pode nos levar 

por dois caminhos: a negativa ou a confirmação.

Um nó-interno (internal node) é uma pergunta subsequente ao nó-raiz ou a 

outro nó-interno, que por sua vez nos levará a outras duas possíveis 

conclusões. Um terminal ou folha (terminal ou leaf) é um fim de galho (branch), 

ou caminho, desta nossa árvore.
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Figura 9 - Exemplo de árvore

Em princípio, poderíamos pensar que existem diversas árvores que poderiam 

ser montadas através de diversos arranjos das perguntas. As árvores mais 

interessantes seriam aquelas nos levariam a folhas mais rapidamente, pois 

são nelas que encontramos as respostas que queremos. Encontrar uma 

árvore ótima não é uma tarefa simples quando percebemos que o formato de 

resposta binária das árvores nos resulta em um tamanho exponencial de 

pesquisa.

Não entraremos no detalhe da comparação entre diferentes métodos de 

árvores de decisão, pois este não é o objetivo deste trabalho. Através do 

software MatLab, foi utilizado um classificador chamado de complex tree, ou 

árvore complexa.
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5. METODOLOGIA

5.1.Estrutura de diagnóstico

5.1.1. Métodos das Frequências

Em conjunto a esta metodologia, o uso de máquina de vetor de suporte 

(support vector machine, ou SVM), uma técnica de classificação baseada em 

machine learning, foi empregada. SVM mostrou bons resultados na 

identificação ataques epilépticos, pois foi desenvolvida como um classificador 

binário, possuindo assim vantagens em classificações binárias. Ela constrói 

um hiperplano separador ótimo no espaço apresentado e faz com que a 

máquina aprenda e ofereça um ponto ótimo como resposta.

Para este tipo de análise, a representação de tempo-frequência (TFR) 

baseada em HHT foi considerada como tempo-frequência Imagem (TFI). A 

segmentação do TFI foi implementada com base nas bandas de frequência

dos ritmos de sinais de EEG. 

São extraídas também funções estatísticas, incluindo média, variância, 

assimetria e curtose da intensidade de pixels no histograma da imagem 

segmentada em escala de cinza em tempo-frequência (time-frequency image, 

ou TFI).

A partir de ferramentas estatísticas, um teste de hipóteses com menores 

valores de p indica que as quatro formas de onda (teta, alfa, beta e gama) 

com suas características de média, variância e assimetria são altamente 

determinantes. As características ótimas das ondas teta, alfa, beta e gama 

são alimentadas no SVM com núcleo de função radial base (radial basis 
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function, RBF) para a classificação de sinais de EEG de convulsões ou não. 

Os experimentos são conduzidos em dez trilhas independentes para testar o 

desempenho do método proposto. 

A curva de precisão de classificação e características de operação do receptor 

(ROC) foi utilizada para avaliar a precisão do método. Os resultados mostram 

que esta pode atingir uma média de 99,125% e proporcionar uma precisão de 

classificação melhor do que algumas abordagens estudadas previamente.

O diagrama a seguir é apresentado no artigo do método e retrata a 

metodologia passo-a-passo para o chamado método das frequências:

Figura 10 - Fluxograma do método das Frequências

5.1.2. Métodos da Transformada de Fourier

Este método proposto consiste de dois estágios: método baseado em FFT 
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Welch e classificador de SVM. Quando se aplica o método de análise 

espectral de Welch aos sinais EEG obtém-se 129 características a partir do 

método Welch baseado em FFT foram aplicadas ao classificador de SVM para 

a detecção de crises epilépticas. O fluxograma do método proposto é 

apresentado na figura 11.

Figura 11 - Fluxograma do método da Transformada de Fourier

A forma como os resultados dos métodos de tratamento de sinal se 

relacionam com a classificação para separar pacientes doentes de saudáveis 

é dada na seção resultados deste relatório.

5.1.3. Método das Entropias

Para utilização da Entropia AppEn nesse trabalho os sinais EEG Primeiro, são 

divididos em dois conjuntos (50% / 50%), um conjunto de "treinamento" e um 

conjunto de validação. Este primeiro conjunto foi usado para direcionar os 

parâmetros do modelo e o segundo conjunto foi usado para aplicar o modelo 

e avaliar seu desempenho. Ou seja, a AppEn é calculada para a totalidade da 

base, 50% das entropias é usada para calibrar o classificador, no caso o 
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Complex Tree, já descrito anteriormente, e em seguida o restante da base é 

tratado pelo classificador que atribui o “diagnóstico” a base, resultado esse 

que é confrontado com os resultados pré-estabelecidos para Universidade de 

Bonn e assim a eficiência do método pode ser definida.

O fluxograma do método proposto é dado na Figura 12.

Figura 12 - Fluxograma do método das entropias.

5.2.MATLAB

Todos os métodos e classificadores aqui apresentados foram implementados 

no software MATLAB. O MATLAB, abreviação para MATrix LABoratory, é um 

software com linguagem simples e direta, que realiza cálculos de engenharia, 

e por isso possui uma ampla biblioteca de funções matemáticas pré-definidas.
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Todos os códigos utilizados para demonstrar os resultados desse trabalho 

podem ser encontrados no apêndice deste documento.
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6. RESULTADOS E DISCUSSÃO

6.1.Resultados Método de Frequências + SVM Quadrático

A aplicação do Método de Frequências em um primeiro trabalho realizado 

anteriormente na Ecole Centrale de Marseille, França, (Fontenelle et al., 

2015), permitiu seu desenvolvimento através do software MatLab e o teste de 

sua eficiência.

O estudo foi baseado em exames de EEG discretizados, caracterizados por 

um conjunto de valores e com uma frequência de amostragem. O trabalho é 

baseado em dados da Universidade de Bonn em que os exames são 

apresentados em formato .txt, e a frequência de amostragem é 173,61 Hz. 

Cada arquivo tem 4097 números inteiros.

Seguida a primeira leitura da base de dados, a decomposição é aplicada em 

forma modal intrínseca. Para isso, foi utilizado um módulo disponível em 

MATLAB Central. Para cada uma das funções, foram aplicadas transformadas 

de Hilbert para calcular os valores de frequência e intensidade em cada 

instante.

Para discretizar os valores de frequência e intensidade, de modo a criar a TRI 

desejada, com a intensidade como uma função de tempo e frequência na 

forma de uma imagem. Tempo e frequência foram indexados em uma matriz 

e a intensidade das cores em um elemento (i, j). As frequências são 

apresentadas em 10 bits (1024 valores).

Estamos interessados em valores que não são zero, então a matriz é dividida 

em bandas de frequência: delta (0-4 Hz), teta (08/04 Hz), alfa (8-12 Hz), beta 
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(12 a 30 Hz), gama (30-50 Hz). O programa resgata os valores diferentes de 

zero para cada banda e os coloca em um vetor. Em seguida, é feita a 

amostragem em intensidades de 8 bits (256), com uma função round_vector

criada pelo projeto.

Para cada vetor, parâmetros estatísticos foram calculados: média, variância, 

assimetria, e curtose usando a função fund_stats. O método é então replicado 

para cada paciente e série, gravando os resultados em um arquivo .mat (um 

para cada paciente). Com esses dados, foi aplicada a função Classification 

Learner, que para ser usada teve-se de embaralhar aleatoriamente os dados 

de 100 séries, com o seguinte código na tabela de Mnew.

Estes dados são tabelas de 100x5 para cada banda de frequência e cada 

paciente. Cada linha corresponde a uma série e as colunas de 1 a 4 aos 

parâmetros estatísticos calculados. A quinta coluna é a que contém a 

informação sobre o estado de saúde do paciente, -1 não é doente ou se 1 

doente.

Finalmente, lança-se o método de classificação de aprendizagem automática 

SVM para a tabela Mnew através da função Classification Learner. As colunas 

de 1 a 4 são utilizadas como preditores, e coluna 5 como uma resposta.

Para o conjunto destas 500 séries, temos como resultado uma comparação 

entre os diversos classificadores:
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Tabela 3 - Comparação de classificadores para o método de frequências

Classificador Eficácia do método

Árvore complexa 97.0%

SVM linear 97.4%

SVM quadrático 98.2%

Figura 13 - Dispersão de pontos com o método de frequências e classificador SVM Quadrático

Figura 14 - Matrix de Conflito para método das entropias e classificador SVM Quadrático
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6.2.Resultados Método da Transformada de Fourier + Árvore 

complexa

Em um primeiro momento apenas a Database de Bonn foi usada para testar 

esta metodologia.

Foram utilizados como base os casos A ao E, saudáveis de olhos abertos e 

epiléticos em estado convulsivo. Esta abordagem foi possível apenas pois a 

database de Bonn oferece um conjunto de sinais pré-tratado e discretizado 

como foi visto no item 4.1.1. Cada caso é apressado em formato .txt com 100 

segmentos e a frequência de amostragem é 173,61 Hz. Cada arquivo tem 

4097 números inteiros que representam os picos de sinal do EEG.

Aplicando-se o método da Transformada de Fourier para cada caso, ou seja, 

409700 pontos para o caso A e 409700 pontos para o caso E, com 100 

segmentos de comprimento 4097 podemos calcular a PSD para cada caso, 

com 129 pontos em cada. O cálculo teórico da PSD foi abordado 

anteriormente neste relatório na Revisão do Material Teórico e o código de 

implementação do método em MATLAB se encontra no apêndice deste 

documento. Nas figuras 15 e 16 podemos ver o PSD para os casos A e E.
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Figura 15 - Potência Espectral de Densidade para o caso A

Figura 16 - Potência Espectral de Densidade para o caso E

Uma vez que PSD foi calculado, ou seja, que os dados de cada caso foram 

tratados é preciso classificá-los em doentes e saudáveis e depois comparar 

obtidos com o resultado estabelecido pelo médico (A é saudável e E é 

epilético). 
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Assim como o método da transformada de Fourier, o classificador SVM 

também foi codado em MATLAB, o código está no apêndice e a explicação 

teórica se encontra no item Revisão do material teórico. A Figura 17 mostra o 

resultado da classificação de árvore complexa para os dois casos.

Figura 17 – Dispersão de pontos com classificador Arvore Complexa no método de Fourier

Desde já podemos perceber que o método não resultará em uma eficiência 

ótima pois os pontos não se encontram perfeitamente agrupados. Aplicando-

se a matriz de conflito ao classificador em árvore, temos:
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Figura 18 - Matriz de Conflito de classificador árvore no método de Fourier

Através da Figura 18 podemos perceber que o método da transformada de 

Fourier + SVM quadrático oferece uma taxa de 42% de acertos no diagnóstico 

de pacientes doentes e de 79% de pacientes saudáveis.

6.3.Resultados Método das Entropias + SVM Quadrático 

Como nos outros métodos, classificamos primeiramente como doentes os 

indivíduos em que sinal resultante do exame de EEG tenha sido interictal ou 

ictal.

Combinando o método de entropias com um classificador do tipo SVM 

quadrático, chegamos a uma eficiência de 78% para a combinação.

Comparado ao método de Fourier com classificador de árvore complexa, 

temos uma eficiência mais satisfatória, mas longe do resultado para o método 

das frequências com classificador SVM quadrático.
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Figura 19 - Matriz de Conflito de classificador SVM quadrático no método de Entropias

Figura 20 - Dispersão de pontos com classificador SVM Quadrático no método de Entropias
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6.4.Extensão dos métodos para classificação tripla

Levando os métodos de classificação a um nível superior, podemos decidir 

classificar os pacientes não só entre saudáveis e doentes, mas em três 

categorias diferentes: normal, interictal (entre crises), ictal (em crise); 

definidos respectivamente por 0, 1, 2.

Embora o problema passe a ser mais complexo, ele é muito útil quando a crise 

detectada durante o exame não é a imagem clássica de uma síndrome 

epilética, a convulsão, mas sim as crises que podem passar despercebidas.

Para isso, iremos utilizar os métodos das entropias e de Fourier, pois apesar 

de terem apresentado eficiência menor quando comparados ao método das 

frequências, são os únicos capazes de rodar tal classificação tripla, mais 

complexa, em um tempo razoável.

Como esperado, as eficiências dos métodos diminuíram por conta da 

complexidade da nova análise. Para mitigar essa deficiência encontrada, será 

apresentado em seguida um método combinando os métodos de Fourier e 

Entropias.

A metodologia para a resolução desta classificação segue as mesmas teorias 

para os métodos e classificadores apresentados na seção Metodologia deste 

relatório. Novamente, os classificadores são escolhidos de forma a maximizar 

a eficiência atingida por cada método.
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6.4.1. Resultados Método de Fourier para classificação tripla + 

Árvore Complexa

Os resultados para este método nos mostram que ele é eficiente, em 

classificar quem são os indivíduos saudáveis, mas se mostra deficiente em 

classificar para os indivíduos doentes quais estão entre crises e quais estão 

em crise.

  

Figura 21 - Matriz de Conflito de classificador Árvore Complexa no método de Fourier em valores 
relativos e absolutos em classificação tripla

Figura 22 - Dispersão de pontos com classificador Árvore Complexa no método de Fourier em 
classificação tripla
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6.4.2. Resultados Método das Entropias para classificação tripla 

+ Árvore Complexa

Ao contrário do método de Fourier, o método das entropias apresenta um 

melhor resultado quanto à classificação de pacientes doentes entre o período 

entre crises e em crise, mas uma eficiência menor em detectar quais pacientes 

são saudáveis.

Figura 23 - Matriz de Conflito de classificador Árvore Complexa no método de Entropias em valores 
relativos e absolutos em classificação tripla

  

Figura 24 - Dispersão de pontos com classificador Árvore Complexa no método de Entropias em 
classificação tripla
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6.4.3. Resultados Método combinado de Fourier e Entropias para 

classificação tripla + Árvore Complexa

A combinação dos métodos nos traz um resultado superior quando 

comparado aos métodos individuais, atingindo uma eficiência de 72% em 

média. Foi possível atingir um alto nível de precisão na classificação de 

pessoas saudáveis e um resultado mais satisfatório para a classificação dos 

pacientes doentes em entre crises ou em crise.

Figura 25 - Matriz de Conflito de classificador Árvore Complexa no método de Entropias em valores 
relativos e absolutos em classificação tripla

Figura 26 - Dispersão de pontos com classificador Árvore Complexa para método combinado de 
Entropias e Fourier em classificação tripla
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7. ANÁLISE DOS RESULTADOS E CONSIDERAÇÕES FINAIS

Como exposto anteriormente, as análises dos resultados para cada método 

foram divididas em duas aplicações. Na primeira procuramos identificar os 

pacientes doentes dos saudáveis. E em um segundo momento procuramos 

diferenciar pacientes saudáveis, epiléticos em estado ictal e epiléticos em 

estado interictal.

Na primeira aplicação podemos perceber um resultado bastante expressivo 

do método das frequências + SVM se comparado aos demais métodos com 

uma eficiência global de 98%. Isso se deve ao fato do método se apoiar em 

bandas de frequência, como pudemos ver ao longo desse trabalho. As bandas 

de frequência conseguiram separar de forma muito precisa o comportamento 

de pacientes epiléticos, com frequências globais mais baixas, de pacientes 

saudáveis que pertencem as bandas de frequências mais altas. No entanto, 

tal eficiência tem um custo de processamento bastante elevado que 

infelizmente não tivemos a oportunidade de discutir neste trabalho.

Ambos os métodos das entropias e o método da transformada de Fourier 

tiveram resultados interessantes para a primeira aplicação com eficiência 

global de 78% e 63% respectivamente. Apesar de ambos os métodos 

apresentarem uma eficiência de diagnóstico menos interessante que o 

Método das Frequências eles podem ser construídos com funções já 

existentes na biblioteca interno do MATLAB o que diminui drasticamente o 

tempo de cálculo em relação ao método das frequências.

Em um segundo momento os métodos das Entropias e o Método das 

Frequência foram testados para a aplicação 2, ou seja, a diferenciação de 

pacientes doentes, epiléticos ictais e epiléticos interictais. Infelizmente o 
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método das frequências não pode ser utilizado nesta segunda etapa devido a 

limitações de hardware, uma vez que a complexidade do cálculo se tornava 

muito importante em relação ao processador utilizado no projeto.

Como esperado ambos os métodos tiveram uma redução na sua eficiência 

global pois o nível de segmentação do classificador por aumentado. Logo a 

eficiência global da aplicação 2 foi de 68% para o método das entropias e 54% 

para o método da Transformada de Fourier. 

No entanto, o método de Fourier se revelou mais eficiente para a detecção de 

pacientes saudáveis com porcentagem de 91% de acerto. Já o método das 

entropias de revelou mais eficiente que o método de Fourier na detecção dos 

epiléticos ictais e epiléticos interictais com eficiência de 74 e 40% 

respectivamente, assim ambos os métodos foram combinados para aumentar 

a eficiência global da aplicação 2. A combinação aumentou a eficiência global 

a 72%. Uma melhoria importante em relação aos dois métodos em separado

sem o prejuízo ao tempo de processamento.

Finalmente, podemos concluir que todos os métodos geraram resultados 

satisfatórios em menor ou maior grau e fizeram desta breve pesquisa muito 

satisfatória para seus integrantes. 

Como próximos passos podemos dizer que se faz necessário uma otimização 

do método das frequências para que se possa testa-lo na aplicação 2. Ainda 

se faz necessária uma investigação mais aprofundada da base CHB-MIT para 

discretiza-la e assim poder testar a eficiência dos métodos com uma outra 

base.



44

8. REFERENCIAS

Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset 

Detection and Treatment. Tese de PHD, Massachusetts Institute of 

Technology - USA, 2009.

Andrzejak RG, Lehnertz K, Rieke C, Mormann F, David P, Elger CE (2001) 

Indications of nonlinear deterministic and finite dimensional structures in time 

series of brain electrical activity: Dependence on recording region and brain 

state, Phys. Rev. E, 64, 061907. Artigo, Massachusetts Institute of Technology 

- USA, 2001.  

Fontenelle M, Rosemberg A, Camilli C, Ulian E, Barros IL, Tassoni L. 

Application des méthodes de l’entropie et des fréquences pour le diagnostique 

de l'épilepsie. Trabalho de graduação (Eng. Generalista), Ecole Centrale 

Marseille - França, 2015.

Fu K., Qu J., Chai Y., Dong Y. Classification of seizure based on the time-

frequency image of EEG signals using HHT and SVM. Artigo, School of 

Automation, Chongqing University, Chongqing – China 2014.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, 

Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and 

PhysioNet: Components of a New Research Resource for Complex 

Physiologic Signals. Circulation 101(23):e215-e220 [Circulation Electronic 

Pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 

13).

GOLDMAN L., AUSIELLO D. Cecil: Medicina. 23ª ed. Rio de Janeiro: Elsevier,

2009. Vol I e II.

GUYTON, A.C.; HALL, J.E. Tratado de Fisiologia Médica. 11ª ed. Rio de 

Janeiro, Elsevier Ed., 2006.

ROWLAND, L. P. MERRIT – Tratado de Neurologia. 11.ed. Rio de Janeiro: 

Guanabara Koogan, 2007



45

Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, and Laxminarayan R 

(2016). Health and economic benefits of public financing of epilepsy treatment 

in India: An agent-based simulation model. Epilepsia Official Journal of the 

International League Against Epilepsy doi: 10.1111/epi.13294, [WHO; 

http://www.who.int/mediacentre/factsheets/fs999/en/]

Pang-Ning T., Steinbach M., Kumar V. (2006): Introduction to data mining -

Michigan State University, University of Minnesota.

Polat K, Günes S. Classification of epileptiform EEG using a hybrid system 

based on decision tree classifier and fast Fourier transform. Artigo, Selcuk 

University - Turquia, 2006.

SMOLA, A.J.; BARTLETT P.L.; SCHOLKOPF B.; SCHUURMANS D.; 

Advances in large margin classifiers. Massachusetts Institute of Technology. 

London, England: Ed. MIT Press, 2000.

U. Rajendra Acharya, H. Fujita, Vidya K. Sudarshan, Shreya Bhat, Joel E.W. 

Koh. Application of entropies for automated diagnosis of epilepsy using EEG 

signals: A review.

VAPNIK, V.N.; The Nature of Statistical Learning Theory. USA: Springer, 2nd 

ed., 1999. 



46

Códigos MATLAB

Impressão dos EEGs da Universidade de Bonn

Clear

addpath('C:\Users\Iohana\Desktop\TCC\Z');

addpath('C:\Users\Iohana\Desktop\TCC\O');

addpath('C:\Users\Iohana\Desktop\TCC\F');

addpath('C:\Users\Iohana\Desktop\TCC\N');

addpath('C:\Users\Iohana\Desktop\TCC\S');

name = cell(1,100);

data_group = {'Z','O','F','N','S'};

for k=1:5,

   prefix = data_group{k};

   

   signal = [];

   

   for i=1:100,

       

       t = num2str(i);

       if (length(t) == 1),

           t = strcat(prefix,'0','0',t,'.txt');

       end

       if (length(t) == 2),

           t = strcat(prefix,'0',t,'.txt');

       end

       if (length(t) == 3),

           t = strcat(prefix,t,'.txt');

       end

       name{i} = t;

       

       name{i}

       basedonnees = fopen(name{i});

     

       y = fscanf(basedonnees,'%f',[4097 1]);

       signal = [signal;y];

       

       fclose(basedonnees);

       

   end

   end

   f= 173.61;

   s = 1/f;

   fim = length(signal)*s;
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tempo = [0:s:fim];

tempo(end)=[];

plot(tempo,signal)

       hold on

       ylabel('Caso E')

       xlabel('Tempo (s)')

       axis([0, 24, -2000, 2000])

       hold off
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Transformada de Fourier pelo método de Welth dos EEGs da 

Universidade de Bonn

clear

addpath('C:\Users\Iohana\Desktop\TCC\Z');

addpath('C:\Users\Iohana\Desktop\TCC\O');

addpath('C:\Users\Iohana\Desktop\TCC\F');

addpath('C:\Users\Iohana\Desktop\TCC\N');

addpath('C:\Users\Iohana\Desktop\TCC\S');

name = cell(1,100);

data_group = {'F','S'};

for k=2:2,

   prefix = data_group{k};

   

   signal = [];

   

   for i=1:100,

       t = num2str(i);

       if (length(t) == 1),

           t = strcat(prefix,'0','0',t,'.txt');

       end

       if (length(t) == 2),

           t = strcat(prefix,'0',t,'.txt');

       end

       if (length(t) == 3),

           t = strcat(prefix,t,'.txt');

       end

       name{i} = t;

       basedonnees = fopen(name{i});

    

       y = fscanf(basedonnees,'%f',[4097 1]);

       signal = [signal;y];

         

       fclose(basedonnees);

       

   end

   segmentLength = 100;

   noverlap = [];

   pxx = pwelch(y,segmentLength,noverlap); 

   end
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   f= 173.61;

   s = 1/f;

   fim = length(y)*s;

tempo = [0:s:fim];

tempo(end)=[];

plot(10*log10(pxx))
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Métodos das Entropias - AppEn

function [ApEn] = ApEn3(series,dim,r)

control = ~isempty(series);

assert(control,'The user must introduce a time series (first inpunt).');

control = ~isempty(dim);

assert(control,'The user must introduce a embbeding dimension (second 

inpunt).');

control = ~isempty(r);

assert(control,'The user must introduce a tolerand (r) (third inpunt).');

N = length(series);

result = zeros(1,2);

r = r*std(series);

for j = 1:2

   m = dim+j-1; % 'm' is the embbeding dimension used each iteration

   % Pre-definition of the varialbes for computational efficiency:

   phi = zeros(1,N-m+1);

   patterns = zeros(m,N-m+1);

   

   % First, we compose the patterns

   % The columns of the matrix 'patterns' will be the (N-m+1) patterns of 

'm' length:

   if m == 1 % If the embedding dimension is 1, each sample is a pattern:

       patterns = series;

   else % Otherwise, we build the patterns of length 'm':

       for i = 1:m

           patterns(i,:) = series(i:N-m+i);

       end

   end

   

   % Second, we compute the number of patterns whose distance is less than 

the tolerance.

   % This loop goes over the columns of matrix 'patterns':

   for i = 1:N-m+1

       % 'temp' is an auxiliar matrix whose elements are the maximum 

       % absolut difference between the current pattern and the rest:

       if m == 1 

           temp = abs(patterns - repmat(patterns(:,i),1,N-m+1));

       else

           temp = max(abs(patterns - repmat(patterns(:,i),1,N-m+1)));

       end

       % We determine which elements of 'temp' are smaller than the 

tolerance:

       bool = any((temp < r),1);
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       % We get the relative frequency of the current pattern: 

       phi(i) = sum(bool)/(N-m+1);

   end

   % Finally, we average the natural logarithm of all relative 

frequencies:

   result(j) = mean(log(phi));

end

ApEn = result(1)-result(2);

end 
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Métodos das Entropias – manipulação da base – extração das entropias

Clear

addpath('C:\Users\Iohana\Desktop\TCC\Z');

addpath('C:\Users\Iohana\Desktop\TCC\O');

addpath('C:\Users\Iohana\Desktop\TCC\F');

addpath('C:\Users\Iohana\Desktop\TCC\N');

addpath('C:\Users\Iohana\Desktop\TCC\S');

addpath('C:\Users\Iohana\Desktop\TCC\_entropy_functions');

typeEntropie = 'AppEn';

name = cell(1,100);

data_group = {'F','O','N','S','Z'};

for k=1:length(data_group),

   prefix = data_group{k};

   entropie = zeros(1,100);

   

   

   for i=1:100,

       t = num2str(i);

       if (length(t) == 1),

           t = strcat(prefix,'0','0',t,'.txt');

       end

       if (length(t) == 2),

           t = strcat(prefix,'0',t,'.txt');

       end

       if (length(t) == 3),

           t = strcat(prefix,t,'.txt');

       end

       name{i} = t;

       name{i}

       basedonnees = fopen(name{i});

       signal = fscanf(basedonnees,'%f',[4097 1]);

       fclose(basedonnees);

       entropie(1,i) = ApEn3(signal,2,0.2); 

       

   end

   

   Folder='_entropies';

   if ~exist(Folder,'dir')
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       [PathStr,FolderName]=fileparts(Folder);

       mkdir(FolderName);

   end

   

fichier = 

fopen(strcat('_entropies','/','entropie',typeEntropie,'_',prefix,'.txt'),'w');

   fprintf(fichier,'%f\r\n',entropie);

   fclose all;

end



54

Métodos das Entropias – manipulação da base – Treinamento do 

modelo

Clear

id = {'Z','O','N','F','S'};

idnum = [1 2 3 4 5];

typeEntropie = 'PermEn';

repertoire = strcat('C:\Users\Iohana\Desktop\TCC\_entropies');

addpath(repertoire);

fichierSortie = strcat('_entropies','\','entropie','_',typeEntropie,'.txt');

[m n] = size(id); 

data_numeroGroupe = zeros(n*100,1

data_maladie = zeros(n*100,1);   

data_entropie = zeros(n*100,1);

data_ictal = zeros(n*100,1);

data_output = zeros(n*100,4);

for i=1:n, 

   chemin = strcat('_entropies\','entropie',typeEntropie,'_',id{i},'.txt');

   fichier = fopen(chemin);

   entropie = fscanf(fichier,'%f',[100 1]);

   fclose(fichier);

   for j=(100*(i-1)+1):(100*i),

       if(j~=i*100), 

           k = mod(j,100); %k vai de 1-100

       else

           k=100;

       end

       

       data_entropie(j)= entropie(k);

       

       if idnum(i)==1

           data_ictal(j) = 0;

           data_numeroGroupe(j) = 1;

           data_maladie(j) = 0;

       end

       if idnum(i)==2

           data_ictal(j) = 0;

           data_numeroGroupe(j) = 2;

           data_maladie(j) = 0;

       end
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       if idnum(i)==3

           data_ictal(j) = 1;

           data_numeroGroupe(j) = 3;

           data_maladie(j) = 1;

       end

       if idnum(i)==4

           data_ictal(j) = 1;

           data_numeroGroupe(j) = 4;

           data_maladie(j) = 1;

       end

       if idnum(i)==5

           data_ictal(j) = 2;

           data_numeroGroupe(j) = 5;

           data_maladie(j) = 1;

       end

       

       data_output(j,1) = data_numeroGroupe(j);

       data_output(j,2) = data_maladie(j);

       data_output(j,3) = data_ictal(j);

       data_output(j,4) = entropie(k);

       

   end

end

if exist(fichierSortie, 'file'),

   display('Fichier dejà existant, variable data_output crée');

else

   for z=1:100*n,

       fprintf(fopen(fichierSortie,'a'),'%1.0f ',data_numeroGroupe(z)); %'a' 

avoids overwrite

       fprintf(fopen(fichierSortie,'a'),'%1.0f ',data_maladie(z));

       fprintf(fopen(fichierSortie,'a'),'%1.0f ',data_ictal(z));

       fprintf(fopen(fichierSortie,'a'),'%f \r\n',data_entropie(z));

       fclose all;

   end

end
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Métodos das frequências – geração da base

clear;

for flux=1:5

%open file

if flux == 1

name_begin='Z';

name_end='.txt';

end

if flux == 2

name_begin='O';

name_end='.txt';

end

if flux == 3

name_begin='N';

name_end='.TXT';

end

if flux == 4

name_begin='F';

name_end='.txt';

end

if flux == 5

name_begin='S';

name_end='.txt';

end

v_delta = zeros(100,5);

v_theta = zeros(100,5);

v_alpha = zeros(100,5);

v_beta = zeros(100,5);

v_gamma = zeros(100,5);

for hoa=1:100

   

str = sprintf('%03d', hoa);

str = sprintf('%s', str);

fileName = strcat(name_begin, str, name_end);

fileID = fopen(fileName, 'r');

formatSpec = '%f';
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x = fscanf(fileID, formatSpec);

f_zero = 173.61;

Ts = 1/f_zero;

addpath('C:\Users\Iohana\Desktop\TCC\Hilbert Huang transform module');

addpath('C:\Users\Iohana\Desktop\TCC\Z');

addpath('C:\Users\Iohana\Desktop\TCC\O');

addpath('C:\Users\Iohana\Desktop\TCC\F');

addpath('C:\Users\Iohana\Desktop\TCC\N');

addpath('C:\Users\Iohana\Desktop\TCC\S');

imf = emd(x);

for k = 1:length(imf)

  th   = angle(hilbert(imf{k}));

  d{k} = gradient(th)/Ts/(2*pi);

  abso{k} = abs(hilbert(imf{k}));

end

N = length(x);

c = linspace(0,(N-1)*Ts,N);

cor_final(1024,4097)=0;

for k = 1:length(imf)

   d_normal = [d{k}];

   f_max(k)= max(d_normal);

   abso_normal = [abso{k}];

   absao(k)=max(abso_normal);

end

freq_max = max(f_max);

lim_abs = max(absao);

for k = 1:length(imf)

   cor = zeros(4097,1024);

   d_normal = [d{k}];

   abso_normal = [abso{k}];

   for i= 1:N

      if d_normal(i)>0

         index = round(1024*d_normal(i)/freq_max);

         if index == 0 

             index = 1;

         end

         %definit le groupe (temps, frequence, intensite)
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         cor(i,index) = abso_normal(i);          

      end

   end

cor = cor*1024/lim_abs;

   c_t=transpose(cor);

   cor_final = cor_final + c_t;

end

   %separation des bandes de frequence

   ind_delta = round(4*1024/freq_max);

   ind_theta = round(8*1024/freq_max);

   ind_alpha = round(12*1024/freq_max);

   ind_beta = round(30*1024/freq_max);

   ind_gamma = round(50*1024/freq_max);

   

   cor_delta = cor_final(1:ind_delta,1:4097);

   cor_theta = cor_final(ind_delta+1:ind_theta,1:4097);

   cor_alpha = cor_final(ind_theta+1:ind_alpha,1:4097);

   cor_beta = cor_final(ind_alpha+1:ind_beta,1:4097);

   cor_gamma = cor_final(ind_beta+1:ind_gamma,1:4097);

   

   

   ens_delta = cor_delta(cor_delta>0);

   ens_theta = cor_theta(cor_theta>0);

   ens_alpha = cor_alpha(cor_alpha>0);

   ens_beta = cor_beta(cor_beta>0);

   ens_gamma = cor_gamma(cor_gamma>0);

   

   ens_delta = round_vector(ens_delta, 256);

   ens_theta = round_vector(ens_theta, 256);

   ens_alpha = round_vector(ens_alpha, 256);

   ens_beta = round_vector(ens_beta, 256);

   ens_gamma = round_vector(ens_gamma, 256);

   

   v_delta(hoa, 1:4)= fund_stats(ens_delta);

   v_theta(hoa, 1:4)= fund_stats(ens_theta);

   v_alpha(hoa, 1:4)= fund_stats(ens_alpha);

   v_beta(hoa, 1:4)= fund_stats(ens_beta);

   v_gamma(hoa, 1:4)= fund_stats(ens_gamma);

  

   

end

  

   if flux == 1

   

   v_delta(1:100, 5)= -1;
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   v_theta(1:100, 5)= -1;

   v_alpha(1:100, 5)= -1;

   v_beta(1:100, 5)= -1;

   v_gamma(1:100, 5)= -1;

   

   v_delta_A = v_delta;

   v_theta_A = v_theta;

   v_alpha_A = v_alpha;

   v_beta_A = v_beta;

   v_gamma_A = v_gamma;

   

   save('A.mat','v_gamma_A', 'v_theta_A', 'v_delta_A', 'v_alpha_A', 'v_beta_A');

   end

   

   if flux == 2

   v_delta(1:100, 5)= -1;

   v_theta(1:100, 5)= -1;

   v_alpha(1:100, 5)= -1;

   v_beta(1:100, 5)= -1;

   v_gamma(1:100, 5)= -1;

   

   v_delta_B = v_delta;

   v_theta_B = v_theta;

   v_alpha_B = v_alpha;

   v_beta_B = v_beta;

   v_gamma_B = v_gamma;

   save('B.mat','v_gamma_B', 'v_theta_B', 'v_delta_B', 'v_alpha_B', 'v_beta_B');

   end

   

   if flux == 3

   v_delta(1:100, 5)= 1;

   v_theta(1:100, 5)= 1;

   v_alpha(1:100, 5)= 1;

   v_beta(1:100, 5)= 1;

   v_gamma(1:100, 5)= 1;

   

   v_delta_C = v_delta;

   v_theta_C = v_theta;

   v_alpha_C = v_alpha;

   v_beta_C = v_beta;

   v_gamma_C = v_gamma;

   save('C.mat','v_gamma_C', 'v_theta_C', 'v_delta_C', 'v_alpha_C', 'v_beta_C');

   end

   

   if flux == 4

   v_delta(1:100, 5)= 1;

   v_theta(1:100, 5)= 1;

   v_alpha(1:100, 5)= 1;

   v_beta(1:100, 5)= 1;

   v_gamma(1:100, 5)= 1;
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   v_delta_D = v_delta;

   v_theta_D = v_theta;

   v_alpha_D = v_alpha;

   v_beta_D = v_beta;

   v_gamma_D = v_gamma;

   save('D.mat','v_gamma_D', 'v_theta_D', 'v_delta_D', 'v_alpha_D', 'v_beta_D');

   end

   if flux == 5

   v_delta(1:100, 5)= 1;

   v_theta(1:100, 5)= 1;

   v_alpha(1:100, 5)= 1;

   v_beta(1:100, 5)= 1;

   v_gamma(1:100, 5)= 1;

   

   v_delta_E = v_delta;

   v_theta_E = v_theta;

   v_alpha_E = v_alpha;

   v_beta_E = v_beta;

   v_gamma_E = v_gamma;

   save('E.mat','v_gamma_E', 'v_theta_E', 'v_delta_E', 'v_alpha_E', 'v_beta_E');

   end

  

end
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Métodos das frequências – Funções Auxiliares

round_vector.m

function v = round_vector(a,lim);

   if ~isvector(a)

     error('Input must be a vector')

   end

   max_a=max(a);

   for i=1:size(a)

       v(i) = round(a(i)*lim/max_a);

   end

end 

fund_stats.m

function s = fund_stats(a)

%extracts mean, variance, skewness and kurtosis of a vector/array

   %calculate mean

   mean = 0;

   L = length(a)

   for i=1:L

       mean = mean + a(i);

   end

   mean = mean/L;

   

  %calculate variance

   variance = 0;

   for i=1:L

       variance = variance + (a(i)-mean)^2;

   end

   variance = variance/(L-1);

   

   %calculate skewness and kurtosis

   skewness = 0;

   kurtosis = 0;

   for i=1:L

       skewness = skewness + (a(i)-mean)^3;

       kurtosis = kurtosis + (a(i)-mean)^4;

   end

   skewness = skewness/variance^(3/2);

   kurtosis = kurtosis/variance^2;

   

   s = [mean, variance, skewness, kurtosis];

      

end
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emd.m

function imf = emd(x)

% Empiricial Mode Decomposition (Hilbert-Huang Transform)

% imf = emd(x)

% Func : findpeaks

x   = transpose(x(:));

imf = [];

while ~ismonotonic(x)

  x1 = x;

  sd = Inf;

  while (sd > 0.1) | ~isimf(x1)

     s1 = getspline(x1);

     s2 = -getspline(-x1);

     x2 = x1-(s1+s2)/2;

     

     sd = sum((x1-x2).^2)/sum(x1.^2);

     x1 = x2;

  end

  

  imf{end+1} = x1;

  x          = x-x1;

end

imf{end+1} = x;

% FUNCTIONS

function u = ismonotonic(x)

u1 = length(findpeaks(x))*length(findpeaks(-x));

if u1 > 0, u = 0;

else,      u = 1; end

function u = isimf(x)

N = length(x);

u1 = sum(x(1:N-1).*x(2:N) < 0);

u2 = length(findpeaks(x))+length(findpeaks(-x));

if abs(u1-u2) > 1, u = 0;

else,              u = 1; end

function s = getspline(x)

N = length(x);

p = findpeaks(x);

s = spline([0 p N+1],[0 x(p) 0],1:N);
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teste_class_learner.m

clear;

addpath('C:\Users\Caio Camilli\Desktop\Faculdade\Centrale\3eme semestre\Projet 

S7\Database\Tabelas de dados processados');

load A.mat;

load B.mat;

load C.mat;

load D.mat;

load E.mat;

teste=readEntropy('entropiasZONFS_AppEn.txt', {'Z', 'O', 'N', 'F', 'S'});

teste2=readEntropy('entropiasZONFS_SampEn.txt', {'Z', 'O', 'N', 'F', 'S'});

v_test_1 = v_theta_A(1:100,:);

v_test_2 = v_theta_B(1:100,:);

v_test_3 = v_theta_C(1:100,:);

v_test_4 = v_theta_D(1:100,:);

v_test_5 = v_theta_E(1:100,:);

v_test_1(1:100,6) = teste(1:100,3);

v_test_2(1:100,6) = teste(101:200,3);

v_test_3(1:100,6) = teste(201:300,3);

v_test_4(1:100,6) = teste(301:400,3);

v_test_5(1:100,6) = teste(401:500,3);

v_test_1(1:100,7) = teste2(1:100,3);

v_test_2(1:100,7) = teste2(101:200,3);

v_test_3(1:100,7) = teste2(201:300,3);

v_test_4(1:100,7) = teste2(301:400,3);

v_test_5(1:100,7) = teste2(401:500,3);

mnew = [v_test_1; v_test_2; v_test_3; v_test_4; v_test_5];

k = randperm(size(mnew,1)); 

ThetaFreq = mnew(k(1:100),:);


